A locking-free scheme for the LQR control of a Timoshenko beam
نویسندگان
چکیده
In this paper we analyze a locking-free numerical scheme for the LQR control of a Timoshenko beam. We consider a non-conforming finite element discretization of the system dynamics and a control law constant in the spatial dimension. To solve the LQR problem we seek a feedback control which depends on the solution of an algebraic Riccati equation. An optimal error estimate for the feedback operator is proved in the framework of the approximation theory for control of infinite dimensional systems. This estimate is valid with constants that do not depend on the thickness of the beam, which leads to the conclusion that the method is locking-free. In order to assess the performance of the method, numerical tests are reported and discussed. © 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Optimal Locations on Timoshenko Beam with PZT S/A for Suppressing 2Dof Vibration Based on LQR-MOPSO
Neutralization of external stimuli in dynamic systems has the major role in health, life, and function of the system. Today, dynamic systems are exposed to unpredicted factors. If the factors are not considered, it will lead to irreparable damages in energy consumption and manufacturing systems. Continuous systems such as beams, plates, shells, and panels that have many applications in differen...
متن کاملVibration Attenuation Timoshenko Beam Based on Optimal Placement Sensors/Actuators PZT Patches with LQR-MOPSO
The main objective of this study is to reduce optimal vibration suppression of Timoshenko beam under non-periodic step and impulse inputs. Cantilever beam was modeled by Timoshenko theory and finite element numerical method. Stiffness (K), mass (M), and damping (C) matrices are extracted. Then, in order to control structure vibration, piezoelectric patches were used due to simultaneous dual beh...
متن کاملA superconvergent scheme for a locking-free FEM in a Timoshenko optimal control problem
In this work we analyze the numerical approximation of an optimal control problem of a Timoshenko beam, by considering two kinds of distributed control. The discretization of the control variables is performed by using piecewise constant functions. The states and the adjoint states are approximated by a locking free scheme of linear finite elements. An interpolation postprocessing technique is ...
متن کاملVariational Iteration Method for Free Vibration Analysis of a Timoshenko Beam under Various Boundary Conditions
In this paper, a relatively new method, namely variational iteration method (VIM), is developed for free vibration analysis of a Timoshenko beam with different boundary conditions. In the VIM, an appropriate Lagrange multiplier is first chosen according to order of the governing differential equation of the boundary value problem, and then an iteration process is used till the desired accuracy ...
متن کاملhp-Spectral Finite Element Analysis of Shear Deformable Beams and Plates
There are different finite element models in place for predicting the bending behavior of shear deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced Langrange based low order finite element approximations using displacement formulations. However, the finite element models of Timoshenko beams and Mindlin plates with linear interpolation of all generalized disp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 235 شماره
صفحات -
تاریخ انتشار 2011